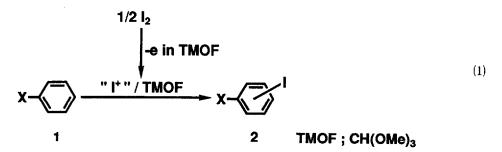
AROMATIC IODINATION BY POSITIVE IODINE ACTIVE SPECIES GENERATED BY ANODIC OXIDATION IN TRIMETHYL ORTHOFORMATE ¹

Tatsuya Shono,* Yoshihiro Matsumura, Susumu Katoh, Kaoru Ikeda, and Tohru Kamada Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606, Japan


Summary: Anodic oxidation of iodine in trimethyl orthoformate afforded a solution of positive iodine active species which brought about more selective aromatic iodination than the hitherto known other methods.

Because of the importance of aromatic iodo compounds as drugs² and intermediates in organic synthesis,³ simple and reliable methods of their preparation are worthwhile to be established. The anodic method is particularly interesting among the methods exploited so far⁴ since it does not require any oxidizing agent to transform iodine to active species ("I⁺"), though only following two types of anodic system have been investigated up to now.

Namely, (i) a solution of "I^{+"} prepared in acetonitrile $("I^+"/MeCN)^5$ and (ii) a solution of "I⁺" prepared in 1,2-dichloroethane containing 10% trifluoroacetic acid ("I⁺"/TFA)⁶ have been reported as the effective systems for aromatic iodination whereas their selectivity is not satisfactory as described below.

We report herein a new system of "I⁺" which possesses remarkably higher selectivity than "I*"/MeCN and "I*"/TFA in the aromatic iodination.

A typical experimental procedure for this new system is as follows: A solution of trimethyl orthoformate (TMOF, 30 ml) containing iodine (I2, 4 mmol) and hydrated lithium perchlorate $(LiC10_4 \cdot 3H_20, 2 g)$ was put into an anodic chamber of a divided electrolysis cell equipped with a ceramic diaphragm, two platinum electrodes (2 cm x 1 cm) and a magnetic bar, and a solution of LiClO₄·3H₂O (2 g) in TMOF (8 ml) was placed in a cathodic chamber. Anodic oxidation was carried out under the conditions of constant current (0.1 A/cm^2) at room temperature. After 3 F/mol of electricity was passed, the addition of anolyte solution (4 ml; equiv. to 0.53 mmol of I₂) into a solution of aromatic compound 1 (1 mmol) in TMOF (1 ml) gave iodinated product 2 (eq. 1). The yields of $\underline{2}$ are summarized in table 1.

Since the treatment of $\underline{1}$ with I_2 in TMOF has never resulted in the aromatic iodination,⁷

1650

the facts shown in the table 1 clearly indicate that a positive iodine active species was certainly generated in the analyte solution.^{8,9} One of the most important characters of "I*"/TMOF is its high selectivity in comparison with "I*"/MeCN and "I*"/TFA. Namely, "I*"/TMOF is able to iodinate selectively the aromatic compounds having an electron-donating substituent such as H, alkyl, or OMe, whereas "I*"/MeCN or "I*"/TFA iodinates aromatic compounds regardless the electronic nature of the substituents. These substituent effects are clearly shown in table 2. Furthermore, "I*"/TMOF shows remarkably high para-selectivity in the aromatic iodination (table 1). These selectivities seem to be especially useful for the synthesis of speciality chemicals.

Aromatic Compound	Yield	Distribution (%)					
<u>1</u>	of $\underline{2}^{a}$	by "I+"/TMOF ^b		by "I+"/MeCN°			
Х	oy Xo	ortho	meta	para	ortho	meta	para
C1	0	-	-	-	20	\sim_0	80
Н	60	-		-	~	-	-
Me	85	30	~ 0	70	47	~ 0	48
t-Bu	97	~ 0	~ 0	~ 100	25	~ 0	74
MeO	69	13	~ 0	87	33	10	57

Table	1. /	Aromatic	Iodination	by	"I+"	/TMOF
-------	------	----------	------------	----	------	-------

^a A solution of "I⁺"/TMOF (equiv. to 0.53 mmol of I₂) was added to 1 mmol of 1.

^b A solution of "I⁺"/TMOF (equiv. to 0.13 mmol of I_2) was added to 2.7 mmol of 1.

° The reported data (see reference 5).

	Relative Yield of Products ^{a, b}			
Substrates	"I*"/TMOF System°	"I+"/MeCN System ^a		
benzene/chlorobenzene	00	$15.72 \sim 24.8 / 1$		
toluene/benzene	600 / 1	$7.33 \sim 21.1 \ / \ 1$		
t-butylbenzene/benzene	73 / 1	7.07/ 1		

Table 2. Competitive Aromatic Iodination

* A mixture of regioisomers. * GLC analysis. * A solution of "I*"/TMOF (equiv. to 0.13 mmol of I₂) was added to a mixture of equimolar amounts of substrates (total;5.0 mmol).

^d The reported data (see reference 5).

References and Notes

- 1. Electroorganic Chemistry 117.
- 2. For example, T.Shono, Y.Ohmizu, T.Toda, N.Oshino, Drug Metab.Dispos., 10, 555 (1982).
- 3. For example, R.F.Heck, Org.React., 27, 345 (1982).
- 4. F. Radner, J. Org. Chem., 53, 3548 (1988), and references cited therein.
- 5. L.L.Miller, B.F.Watkins, J.Am.Chem.Soc., <u>98</u>, 1515 (1976), and references cited therein.
- 6. R.Lines, V.D.Parker, Acta Chem.Scand., <u>B34</u>, 47 (1980).
- 7. Aromatic iodination also did not occur under conditions of $I_2/H_2SO_4/TMOF$.
- 8. An anodic solution was gradually faded from dark brown to clear yellow when 16 F/mol of electricity was passed through a solution of I_2 in TMOF.
- 9. "I*" possibly existing in the anodic solution has not been identified by cyclic volutammetry because of the complicated waves.

(Received in Japan 11 January 1989)